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Abstract
Piezomagnetic materials are characterized by strong coupling between
magnetization and acoustic vibration and the piezomagnetic coefficients
change sign with respect to domain polarization. For piezomagnetic
superlattices (PMSL) with periodically up and down polarized domain
structures, the piezomagnetic coefficients are modulated periodically, and the
resulting phonon–polaritons form a band-like structure. This study, using the
generalized transfer matrix method, shows that a polariton-like band-gap can be
realized in piezomagnetic material with the 6mm point group under a certain
configuration of magnetic field, lattice displacement and domain polarization,
but the mid-gap frequency is restricted to the range of a few GHz or below if
the domain wall effect is taken into consideration.

1. Introduction

Wave propagation in bulk media is determined by the dispersion relation of corresponding
excitations, and the band-gap in excitation spectra is very useful in providing an ‘insulating
background’ for the modes within that frequency window. The ‘insulating background’ offers
the opportunity for local engineering of microstructures, the modes within the band-gap, by
way of specially designed defect-doping, play an important role in guiding wave propagation
in the medium, and the architecture of various defect distribution schemes in the medium paves
the way for a number of device applications. The most notable example is integrated circuits
based on semiconductors, where intrinsic semiconductors are doped locally by n or p type
defects to modify the local carrier density and carrier types so that different logic devices
can be designed. Motivated by the same logic, Yablonovitch and John [1, 2] proposed the
concept of photonic crystals (PC) with an absolute photonic band-gap (PBG) [3–8]; a similar
idea was later applied to develop phononic crystals (PhC) [9–12] and other artificially designed
structures. However, since the photon wavelength and phonon wavelength are much larger
than the lattice constant of the atomic crystal structure, artificially designed structures with
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Figure 1. The schematic setup of a piezomagnetic superlattice. L+ and L− denote the domain
thicknesses and arrows refer to the polarization directions of the domains. Ferromagnetic domains
are arranged along the y-axis and the transverse magnetic field is in the z-axis.

periodically modulated dielectric or elastic constants have to be made comparable with the
wavelength of the corresponding propagating waves.

Recently, the exploration of band-gap materials was further extended to other mode-
coupled systems, in particular the piezoelectric superlattices; these have been studied by several
groups and polariton-like band-gap structures have been proposed [13, 14]. It is well known
that polariton excitations are the collective modes which result from the coupling between
electromagnetic waves and other degrees of freedom in materials. A typical example is the
polariton excitations in bulk ionic crystals where the electromagnetic waves interact strongly
with the optical phonon vibration; the strong coupling causes the opening of a band-gap in the
transmission spectrum near the frequency range where photon dispersion and optical phonon
dispersion intersect with each other. The situation in bulk piezoelectric materials is somewhat
different since the phenomenon involves an electromagnetic wave and an acoustic wave; both
of these have an almost linear dispersion relationship and crossing of the photon and acoustic
phonon dispersions never takes place, thus there is no spectral gap opening in the bulk systems.
To overcome this difficulty, piezoelectric superlattices with an alternately arranged domain
structure are proposed—oppositely polarized ferroelectric domains introduce a modulation in
the piezoelectric constant. As a result, the original acoustic phonon dispersion in bulk media
is folded because of the reduced Brillouin zone. The coupling between electromagnetic waves
and folded ‘optical phonons’ indeed yields the polariton band-gap just as in the bulk ionic
crystals.

In this paper, we have extended our previous rigorous analysis of piezoelectric superlattices
to piezomagnetic superlattices. The excitation spectrum of the phonon–polariton in a coupled
system has been studied using the transfer matrix method; this method not only yields
the full band structures of phonon–polariton excitations, but also explores the coupling
information between the external electromagnetic wave and internal eigenmodes and offer a
directly measurable quantities such as transmission spectra. The piezomagnetic superlattices
we considered here are made of the same type of piezomagnetic material with antiparallel
magnetic domains; a representative configuration is schematically illustrated in figure 1. Due
to the symmetry requirement of the crystal structure, the piezomagnetic coefficients for the
neighbouring antiparallel magnetic domains have opposite signs. The superlattice behaves
like a periodic medium modulated by the piezomagnetic coefficient, and thus the original
linear dispersion curve of the acoustic phonons is effectively folded back because of the finite
Brillouin zone. Now the folded phonon branches can intersect with the photon branch, the
conservations of both energy and momentum ensures that strong coupling between photons
and phonons can occur in the piezomagnetic superlattice and the polaritonic band-gap can be
realized.

Although many studies have been carried out on piezomagnetic materials [15–20], the
study of wave propagation in piezomagnetic superlattices is relatively new, and only very few
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references exist [20] in which the excitation dispersion curve is solved in the long-wavelength
limit. It is of interest to investigate what the dispersion curve looks like in the whole Brillouin
zone, and to check the polariton-like band-gap by calculating the transmission spectra directly,
since this is the only quantity which justifies the existence of the band-gap. In dealing with
piezomagnetic superlattices, an extra precaution has to be taken into consideration concerning
the effect of the magnetic domain wall [23, 24]. Piezomagnetic superlattices can be treated as
rigid superlattices only if the domain sizes are much larger than the domain wall thickness; this
imposes a certain restriction on operating frequencies. To achieve a higher operating frequency
one usually chooses piezomagnetic materials with a large anisotropy constant since the domain
wall thickness is inversely proportional to the square root of the anisotropy constant. Thus, in
this paper cobalt ferrite (CoFe2O4) is chosen as the piezomagnetic material for superlattices
since its anisotropy constant (220×103 J m−3) [24] is quite large for this class of materials and
the corresponding domain wall thickness is about 560 Å. For an operating frequency of several
GHz, the lattice constant of superlattices is of the order of several micrometres, the domain
wall thickness is about 1% of the lattice constant and superlattices can be safely approximated
as rigid lattices. Another advantage of taking CoFe2O4 as a candidate is that this material is of
the hard magnet type and domain walls are energetically difficult to move. We have also chosen
the experimental setting shown in figure 1 because it corresponds to the optimized magneto-
mechanical coefficient in CoFe2O4. In this paper we have used the transfer matrix method to
analyse both the polariton-like band structures and the transmission spectra in piezomagnetic
superlattices. The band structures and transmission spectra are cross-checked, and the band-gap
is shown to exist in the transmission spectra because the in-gap pure phonon modes decouple
from the incident electromagnetic wave.

The rest of the paper is organized as follows. In section 2, we first derive the general
equation set which governs the propagating behaviour of electromagnetic and acoustic waves
in the piezomagnetic superlattices. This differential equation set is then reformulated in terms
of the transfer matrix method, and from this the band structures can be easily obtained using
the Bloch theorem for infinite periodic superlattices while the transmission spectra can be
obtained for finite superlattices after imposing proper boundary conditions. The results for
the band structures and transmission spectra are presented in section 3; in particular, we have
investigated the coupling of various internal eigenmodes with the external incident wave as well
as the size dependence of the polaritonic band-gap in transmission spectra. The conclusion is
drawn in section 4.

2. The transfer matrix method and phonon–polariton modes

For the coupling configuration illustrated in figure 1, the direction of propagation of the
electromagnetic wave and acoustic wave is taken along the superlattice. We assume that the
transverse dimensions are much larger than the thicknesses of the magnetic domains, which are
of the same order as the acoustic wavelength, so a one-dimensional model is applicable. The up
and down polarized domains have layer thicknesses L+ and L−, the piezomagnetic coefficient
has opposite signs in these domains because it is a third-rank tensor. As we mentioned in
the introduction, the piezomagnetic superlattices are treated as rigid lattices, since the lattice
constant is two orders of magnitude larger than the domain wall thickness in the GHz frequency
range considered in this paper, and the modulation of piezomagnetic coefficient is assumed
to be periodic. For the in-layer polarized magnetic domains (z-axis) shown in figure 1, the
transverse magnetic field in the z-axis is coupled to the longitudinal acoustic vibration in the
y-axis. Though other configurations are also possible, they are not considered here because
they yield a much smaller coupling strength than the configuration considered above.
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To describe the wave propagation behaviour in the superlattice depicted in figure 1, we
start with the Maxwell equation for an electromagnetic wave and the vibrational equation of an
acoustic wave

∂2

∂y2
Hz(y, t) = ε0ε33

∂2

∂ t2
Bz(y, t), (1a)

ρ
∂2

∂ t2
uy(y, t) = ∂

∂y
Z2(y, t). (1b)

Hz(y, t) and Bz(y, t) are the magnetic field and magnetic induction, uy(y, t) and Z2(y, t)
are the lattice displacement and stress component. ε33 and ρ denote the relevant dielectric
constant and mass density. For the piezomagnetic crystal CoFe2O4 with point group 6mm,
the general piezomagnetic tensor qi j (i = 1, 2, 3; j = 1, 2, 3, 4, 5, 6) only has five non-zero
piezomagnetic coefficients. They are q15 = q24, q31 = q32 and q33, and only q32 is relevant for
the configuration shown in figure 1. Bz(y, t) and Z2(y, t) are related to Hz(y, t) and uy(y, t)
via the piezomagnetic effect

Bz(y, t) = q31(y)
∂

∂y
uy(y, t) + μ0μ33 Hz(y, t), (2a)

Z2(y, t) = c22
∂

∂y
uy(y, t) − q31(y)Hz(y, t). (2b)

Here, c22 and μ33 are the elastic moduli and permittivity, respectively. These equations suggest
that the transverse magnetic field Hz induces the longitudinal lattice vibration uy and the
corresponding polariton results from such coupling.

Substituting equation (2) into (1), one arrives at a set of coupled equations for the magnetic
field and lattice displacement

ε0μ0ε33μ33
∂2

∂ t2
Hz(y, t) = ∂2

∂y2
Hz(y, t) − ε0ε33q31(y)

∂3

∂ t2∂y
uy(y, t), (3a)

ρ
∂2

∂ t2
uy(y, t) = c22

∂2

∂y2
uy(y, t) − ∂

∂y
(q31(y)Hz(y, t)) . (3b)

For piezomagnetic superlattices, the piezomagnetic coefficient is polarization dependent and
q31(y) = q31θ(y), the sign function θ(y) = ±1 for up and down polarized domains. By
defining the velocity of light in a vacuum c2 = 1/ε0μ0 and the velocity of sound c2

s = c22/ρ,
this equation set can be further cast into a dimensionless form after making the variable
replacement y = ȳL/2π , uy(y, t) = ū y(ȳ, t)L/2π , and H̄z(ȳ, t) = q31 Hz(y, t)/c22. The
final equation set takes the form

ω̄2 H̄z(ȳ, ω̄) + α
∂2

∂ ȳ2
H̄z(ȳ, ω̄) + ω̄2βθ(ȳ)

∂

∂ ȳ
ū y(ȳ, ω̄) = 0, (4a)

ω̄2ū y(ȳ, ω̄) + ∂2

∂ ȳ2
ū y(ȳ, ω̄) − ∂

∂ ȳ
[θ(ȳ)H̄z(ȳ, ω̄)] = 0. (4b)

Here Ā is the corresponding quantity of A in a dimensionless form, Ā(ȳ, ω̄) is a Fourier
transformed quantity of Ā(ȳ, t), L is lattice constant of the piezomagnetic superlattice and
is the sum of two oppositely polarized domains, the reduced lattice constant is 2π . ω̄ =
ωL/2πcs is the reduced frequency of the eigensystem under study. α = c2/c2

s ε33μ33, and
β = q2

31/μ0μ33c22 is magneto-mechanical transducer coefficient which describes the coupling
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strength between photons and phonons. For superlattices composed of CoFe2O4 ferromagnetic
materials [21, 22], the domain wall thickness is about 560 Å. If the lattice constant is of
the order of a few micrometres, which is two orders of magnitude higher than the domain
wall thickness, then the corresponding frequency is in the range of several GHz; the value of
permeability in this frequency range is around μ33 ≈ 2 [22]. The two dynamical parameters are
estimated to be α = 0.7882 × 108, β = 0.4687 for the configuration shown in figure 1. Since
the parameter β = q2

31/μ0μ33c22 determines the coupling strength between the electromagnetic
wave and acoustic wave, and thus ultimately determines the size of polaritonic band-gap, it
is desirable to choose the proper material and configuration setting which yields the largest
magneto-mechanical transducer coefficient in the required frequency range. We would like to
mention in passing that the photon velocity is four orders of magnitude higher than the sound
velocity (see α coefficient), and their wavelengths set two different characteristic length scales
in the bulk piezomagnetic system.

The above differential equations can be recast in terms of the transfer matrix method.
By solving the eigensolutions in the homogeneously up and down polarized domains, the
general solution in superlattices can be expressed within these bases. Using the boundary
conditions that the magnetic field H̄z(ȳ, ω̄), displacement ū y(ȳ, ω̄), the derivative of magnetic
field dH̄z(ȳ, ω̄)/dȳ and stress component Z2(ȳ, ω̄)/c22 = dū y(ȳ, ω̄)/dȳ − θ(ȳ)H̄z(ȳ, ω̄) are
continuous across the domain interface, one can define the transfer matrix in each domain
which relates the fields and their derivatives at the two sides of a domain⎛

⎜⎜⎜⎝

H̄z(L̄±, ω̄)

ū y(L̄±, ω̄)

H̄ ′
z(L̄±, ω̄)

ū′
y(L̄±, ω̄) ∓ H̄z(L̄±, ω̄)

⎞
⎟⎟⎟⎠ = M(L̄±, ω̄)

⎛
⎜⎜⎜⎝

H̄z(0̄, ω̄)

ū y(0̄, ω̄)

H̄ ′
z(0̄, ω̄)

ū′
y(0̄, ω̄) ∓ H̄z(0̄, ω̄)

⎞
⎟⎟⎟⎠ . (5)

The detailed expressions of the transfer matrices M(L̄±, ω̄) are listed in the appendix. Here
upper and lower signs denote the up and down polarized domains. The transfer matrix of
a superlattice can be obtained by successive application of M(L̄±, ω̄) using the sequence
depicting superlattice configuration. This forms the basis for studying the band structures and
transmission spectra of the superlattices.

For example, the band structures can be calculated easily using the Bloch theorem. In this
case, we need to solve the following matrix equation

M(L̄+, ω̄)M(L̄−, ω̄) = exp (ik̄ L̄)I (6)

with I and k̄ denoting the 4 × 4 unit matrix and reduced wavenumber. To compute the
transmission and reflection spectra of a finite superlattice with number of periods NP, the global
transfer matrix is given by

M = [M(L̄+, ω̄)M(L̄−, ω̄)]NP. (7)

For the longitudinal vibrational mode illustrated in figure 1, the huge imbalance of acoustic
impedance between air and the bulk ferromagnetic medium effectively blocks the propagation
of acoustic wave between them, and the boundaries at the two outer surfaces are stress free.
The amplitudes of the transmission t and reflection r can be expressed in terms of the global
transfer matrix elements Mi j as follows

t = 2M42

M42[(M11 + f p M13) + f −1
p (M31 + f p M33)] − (M12 + f −1

p M32)(M41 + f p M43)
, (8a)

r = M42[(M11 + f p M13) − f −1
p (M31 + f p M33)] − (M12 − f −1

p M32)(M41 + f p M43)

M42[(M11 + f p M13) + f −1
p (M31 + f p M33)] − (M12 + f −1

p M32)(M41 + f p M43)
, (8b)
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and the parameter f p = icsω̄/c. The experimentally measured transmission and reflection
spectra are given by T = |t|2 and R = |r |2; they satisfy the energy conservation law R+T = 1
in the absence of dissipation by the medium.

3. Numerical results and discussions

Before we investigate the mode-coupling and gap-opening mechanism in piezomagnetic
superlattices, it is useful to recall how the electronic band-gaps are created from the free
electron picture in periodic crystal structures. The gap opening is determined by the following
two criteria: (1) doubly degenerate electronic states exist for two wavevectors k̄ and k̄ ′ = k̄+K̄n

which are connected by a reciprocal lattice vector K̄n ; (2) these two degenerate states are
coupled by the corresponding Fourier component of electronic potential θ(K̄n). For electronic
systems, degenerate energy states usually occur either at the boundary or at the centre of
Brillouin zones; these are usually where the band-gaps are created. In contrast to electronic
systems, the creation of a band-gap in a piezomagnetic superlattice is somewhat different:
(1) there are two degrees of freedom representing the electromagnetic wave and the vibrational
wave; (2) direct coupling only takes place between different degrees of freedom. Thus, a band-
gap can be created only in those reduced wavevectors where dispersion curves for photons
and phonons intersect with each other. Since the velocity of light is four orders of magnitude
larger than the phonon velocity, the photon wavenumber is very small in the frequency range
of interest and the band-gap only occurs near the Brillouin centre. Therefore, in order to
have a polariton-like band-gap near the Brillouin centre, one needs to have nonzero Fourier
components for the coupling coefficient at the frequency where photon and phonon modes
intersect.

For the symmetrical configuration where the up and down polarized domains have equal
layer thickness, the Fourier components of the structure factor are nonzero only for odd
reciprocal lattice vectors; thus the band-gaps are expected to occur only near the frequency
ω̄ = 1, 3, 5 etc. To check the above physical analysis, the band structures are calculated
from equation (6) for the symmetrical configuration and the dispersion relations of phonon–
polaritons are shown in figure 2. The horizontal axis denotes the reduced frequency while
the vertical axis is the reduced wavenumber. The solid circles represent the real wavenumber
while the open triangles represent the imaginary wavenumber and thus signify the polaritonic
band-gap region. The wavenumber is either purely real or purely imaginary since there is no
absorption in this problem. Figure 2(a) shows the overall band structure in the whole Brillouin
zone, and the dispersion relation can be viewed as simply the folded dispersion relation of an
acoustic wave in a homogeneous medium; the proposed polariton-like band-gap is not visible
in the figure. The fact that

√
α � 104 (ratio of the photon velocity and sound velocity) reminds

us that a significant coupling takes place only near the centre of Brillouin zone. This part of the
dispersion curve is enlarged and replotted in figure 2(b). We find that polariton-like band-gaps
do appear when ωL/2πcs equals odd integers as predicted in our simple physical analysis,
though the sizes of the band-gaps decrease rapidly as the middle gap frequency increases.
Figure 2 suggests that there are two independent dispersion curves: the dispersion curve for
large wavenumbers corresponds to that of a folded acoustic phonon while those at very small
wavenumbers are polariton modes due to mixing between photons and phonons. The size of the
polariton band-gap is proportional to the coupling strength. It should be emphasized that the
polariton band-gap exists only in one of the dispersion curves; the modes of other dispersion
curve are actually present in this gap, but these gap modes can be shown to be decoupled
from the external incident electromagnetic wave and are evident in our calculated transmission
spectra.
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Figure 2. The polariton-like band structures for a symmetrical piezomagnetic superlattice. The
reduced domain thicknesses are L̄+ = L̄− = π and the material parameters are listed in the text.
(a) For the whole Brillouin zone. (b) Near the centre of the Brillouin zone. Open triangles represent
the imaginary wavenumbers and the gap region while the solid circles represent real wavenumbers
and the pass band.
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Figure 3. The polariton-like band structures for an asymmetrical piezomagnetic superlattice near
the centre of the Brillouin zone. L̄+ = 0.5π and L̄− = 1.5π . The other parameters and notation
are the same as in figure 2.

When the layer thicknesses of up and down polarized domains are different, the Fourier
components of the structure factor survive for all reciprocal lattice vectors and polaritonic band-
gaps can occur at both odd and even integer values of reduced frequencies. As an example, the
band structures for the reduced domain thicknesses L̄+ = 0.5π and L̄− = 1.5π are computed
and the results are plotted in figure 3. As shown by the polaritonic band-gaps indicated by the
open triangles, though the band-gaps are now present for more integer frequencies, the sizes of
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Figure 4. Transmission spectra for symmetrical piezomagnetic superlattices: (a) 16 periods,
(b) 256 periods, (c) 2048 periods, (d) 32 768 periods. Since reflection and transmission coefficients
satisfy the sum rule, only transmission coefficients are shown. The other parameters are the same
as those in figure 2.

the gaps are drastically reduced due to the reduced Fourier components of the piezomagnetic
coefficient.

To make sure that the polaritonic band-gaps are genuine, one has to show that the in-
gap modes do decouple from the external incident wave. This can be done by computing the
transmission and reflection spectra of finite superlattices using the generalized transfer matrix
method. As we mentioned in the previous section, the huge imbalance in acoustic impedance
between air and the bulk ferromagnetic medium effectively blocks the propagation of acoustic
waves across the outer surfaces of a finite sample, and the boundaries at the two outer surfaces
can be assumed to be stress free. The resulting transmission spectra are shown in figure 4 for
four different numbers of lattice periods (NP). The transmission spectra change dramatically
with the sample thickness, but the polaritonic band-gap already demonstrates its existence at
a lattice period NP = 16. The appearance of the band-gap is first illustrated as a dip in the
transmission spectra (NP = 16), its width increases with the lattice period and saturates when
the lattice period approaches several thousands of layers and beyond. From the transmission
spectrum plotted in figure 4(d), the relative gaps (the gap divided by the mid-gap frequency) are
15% and 2.1% for the first and second gaps, respectively and they are in very good agreement
with those obtained from the band structures. Note that the rapid oscillations within the pass
bands of the spectra are due to the finite sample length and thus the Fabry–Perot interference
effect within the samples. These calculated transmission spectra also offer useful guidance on
sample preparation in order to observe the sizable polariton-like band-gap experimentally.

4. Conclusion

In summary, the band structure and propagating behaviour of electromagnetic (EM) waves
in piezomagnetic superlattices are studied using the generalized transfer matrix method,
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and the polaritonic band-gaps are predicted and cross-checked from the dispersion relations
and transmission spectra. For a piezomagnetic superlattice made of CoFe2O4 crystal with
point group 6mm, the polaritonic band-gaps result from the mode coupling between an
electromagnetic wave and a longitudinal acoustic wave and the relative gaps (gap divided by
mid-gap frequency) are 15% and 2.1% for the first and second gaps, respectively. In addition,
we show that the band-gap increases with the lattice period and the band-gap saturates when
the lattice period approaches several thousand layers. The above results are obtained within the
framework of a rigid superlattice model which holds approximately in the frequency range of
a few GHz or below.
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Appendix. Transfer matrices for two polarized domains

c± =
√

0.5[(α + β + 1) ± √
(α + β + 1)2 − 4α] are the reduced velocities for photons and

phonons, respectively. ω̄ = ωL/2πcs, L̄± = 2π L±/L. The sub-index ± represents two
polarized domains.

M(L̄±, ω̄, 1, 1) = 1

(c2+ − c2−)

[
c2
−(c2

+ − 1) cos
ω̄ L̄±
c+

− c2
+(c2

− − 1) cos
ω̄L̄±
c−

]
(A.1)

M(L̄±, ω̄, 1, 2) = ∓(c2+ − 1)(c2− − 1)ω̄

(c2+ − c2−)

[
c+ sin

ω̄L̄±
c+

− c− sin
ω̄L̄±
c−

]
(A.2)

M(L̄±, ω̄, 1, 3) = c+c−
(c2+ − c2−)ω̄

[
c−(c2

+ − 1) sin
ω̄L̄±
c+

− c+(c2
− − 1) sin

ω̄L̄±
c−

]
(A.3)

M(L̄±, ω̄, 1, 4) = ±(c2+ − 1)(c2− − 1)

(c2+ − c2−)

[
cos

ω̄L̄±
c+

− cos
ω̄L̄±
c−

]
(A.4)

M(L̄±, ω̄, 2, 1) = ∓ c+c−
(c2+ − c2−)ω̄

[
c− sin

ω̄L̄±
c+

− c+ sin
ω̄L̄±
c−

]
(A.5)

M(L̄±, ω̄, 2, 2) = −1

(c2+ − c2−)

[
c2
+(c2

− − 1) cos
ω̄ L̄±
c+

− c2
−(c2

+ − 1) cos
ω̄L̄±
c−

]
(A.6)

M(L̄±, ω̄, 2, 3) = ±c2+c2−
(c2+ − c2−)ω̄2

[
cos

ω̄L̄±
c+

− cos
ω̄L̄±
c−

]
(A.7)

M(L̄±, ω̄, 2, 4) = −1

(c2+ − c2−)ω̄

[
c+(c2

− − 1) sin
ω̄L̄±
c+

− c−(c2
+ − 1) sin

ω̄L̄±
c−

]
(A.8)

M(L̄±, ω̄, 3, 1) = −ω̄

c+c−(c2+ − c2−)

[
c3
−(c2

+ − 1) sin
ω̄L̄±
c+

− c3
+(c2

− − 1) sin
ω̄L̄±
c−

]
(A.9)

M(L̄±, ω̄, 3, 2) = ∓(c2+ − 1)(c2− − 1)ω̄2

(c2+ − c2−)

[
cos

ω̄L̄±
c+

− cos
ω̄L̄±
c−

]
(A.10)

M(L̄±, ω̄, 3, 3) = 1

(c2+ − c2−)

[
c2
−(c2

+ − 1) cos
ω̄ L̄±
c+

− c2
+(c2

− − 1) cos
ω̄L̄±
c−

]
(A.11)
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M(L̄±, ω̄, 3, 4) = ∓(c2+ − 1)(c2− − 1)ω̄

c+c−(c2+ − c2−)

[
c− sin

ω̄L̄±
c+

− c+ sin
ω̄L̄±
c−

]
(A.12)

M(L̄±, ω̄, 4, 1) = ∓c2+c2−
(c2+ − c2−)

[
cos

ω̄ L̄±
c+

− cos
ω̄L̄±
c−

]
(A.13)

M(L̄±, ω̄, 4, 2) = ω̄

(c2+ − c2−)

[
c3
+(c2

− − 1) sin
ω̄L̄±
c+

− c3
−(c2

+ − 1) sin
ω̄L̄±
c−

]
(A.14)

M(L̄±, ω̄, 4, 3) = ∓c2+c2−
(c2+ − c2−)ω̄

[
c+ sin

ω̄L̄±
c+

− c− sin
ω̄L̄±
c−

]
(A.15)

M(L̄±, ω̄, 4, 4) = −1

(c2+ − c2−)

[
c2
+(c2

− − 1) cos
ω̄ L̄±
c+

− c2
−(c2

+ − 1) cos
ω̄L̄±
c−

]
. (A.16)
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